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Asymptotic expansion techniques are used, in the limit of large Reynolds number, 
to study the structure of fully turbulent shear layers. The relevant Reynolds 
number characterizes the ratio of the local turbulent stress to the local laminar 
stress, so that a relatively thick outer defect layer, in which, to lowest order, 
there is a balance between turbulent stress and convection of momentum, may 
be distinguished from a relatively thin wall layer, in which, to lowest order, 
there is a balance between turbulent and laminar stresses. The two cases examined 
are channel (or pipe) flow and two-dimensional boundary-layer flow with an 
applied pressure gradient, upstream of any separation. Attention, for these two 
cases, is confined to the flow of incompressible constant property fluids. Closure 
is effected through the introduction of an eddy-viscosity model formulated 
with sufficient generality for most existing models to be special cases. Results are 
carried to higher orders of approximation to indicate what properties for the 
friction velocity, integral thicknesses, and velocity profiles, and what conditions 
for similarity are implied by current eddy-viscosity closures. 

1. Introduction 
Engineering results for turbulent shear layers can be obtained from solutions 

of time-averaged conservation equations (cf., for example, Townsend 1956). To 
make these equations a fully determined system, one must introduce closure 
conditions, which relate the Reynolds turbulent stresses, the time averages of 
the fluctuating quantities, to mean flow quantities and their derivatives. While 
some important general Iowest order results may be derived without the intro- 
duction of these closure conditions, complete results to lowest order (and to 
higher orders) require closure. This paper concerns the extraction of results for 
turbulent shear layers for a particular postulated closure condition in the 
asymptotic limit of large (turbulent) Reynolds number. 

For the incompressible constant property fluids considered in this paper, the 
Reynolds number for laminar flow characterizes the ratio of convective to 
diffusive forces. A large Reynolds number implies that, near the boundary, a 
relatively thin inner diffusive flow layer describable by a parabolic boundary- 
value problem may be distinguished from a rela,tively thick outer potential flow 
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layer describable by an elliptic boundary-value problem (cf., for example, Van 
Dyke 1964; Cole 1968). 

It is important to note that, for turbulent shear flows near a boundary, an 
inviscid potential outer flow layer is separated from a relatively thin shear layer 
near the wall, by adopting (classical) boundary-layer approximations, not by 
formal justification, but, rather, on an intuitive and empirical basis (Rotta 1962). 
The Reynolds number exploited in the asymptotic analysis of turbulent shear 
flows near a wall characterizes the ratio of the local turbulent stress to the local 
laminar stress. It has long been known, in a general way, that, when this Reynolds 
number becomes large, the relatively thin shear flow layer (or boundary layer) 
near the wall may itself be further subdivided into two sublayers (Coles 1969). 
One sublayer, the defect layer, is a thicker exterior portion, in which (i) the 
tangential velocity may be expressed as a small perturbation to the ‘outer edge’ 
value as the Reynolds number gets large, and (ii) the laminar stress is small 
relative to the turbulent stress and the convective and pressure-gradient terms. 
The other sublayer, the wall layer, is a thinner interior portion, in which the 
turbulent and laminar stress terms are of comparable magnitude, but the con- 
vective and pressure-gradient terms are (often) of higher order. The systematic 
exploitation of these properties is here carried out by means of limit-process 
expansion techniques. In  the generality of results, and in a myriad of details, 
the results obtained differ from those of earlier intuitive approaches (Mellor & 
Gibson 1966; Mellor 1966). 

The closure, postulated here for the turbulent boundary-value problem, is 
presented in terms of the (conventional) phenomenological device, the eddy 
viscosity. It has been asserted, but not universally (cf. Mellor & Herring 1971), 
that the eddy viscosity, as a local algebraic relationship, suffices for equilibrium 
(or self-similar) turbulent flows only, while a, differential relationship (emphasizing 
the history) is required for treatment of non-equilibrium (or non-self-similar) 
flows (cf. Bradshaw 1967). The point of view adopted here is that the former 
eddy-viscosity concept remains a viable one that deserves (asymptotic) analysis, 
after which the same approach should be applied to the latter concept. In  fact, 
the authors believe that the asymptotic apparatus developed in this paper 
will need little extension to be applicable to most of the (so-called) second-order 
(or field method) closures now in use. 

A more practical problem with the eddy-viscosity approach is that, with so 
many forms having been proposed for this quantity, a great proliferation of 
solutions by numerical and integral techniques has appeared. A major goal of 
the current work is to delineate what may be expected from this approach, 
through the analytic treatment of a two-layer eddy-viscosity model formulated 
with enough generality to encompass most of the models proposed. The proposed 
asymptotic expansion techniques, in the limit of large Reynolds number, require 
only that a few, conventional, rather weak statements be made concerning the 
properties of the eddy viscosity at the wall, in the overlap region (intermediate to 
the wall and defect layers), and a t  the ‘outer edge ’. By means of these techniques, 
it is then deduced what such a general eddy-viscosity model implies about the 
friction velocity, integral thicknesses, conditions for equilibrium flow, etc., to 
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successive orders of approximation. The method obtains these results by using 
the knowledge of the properties peculiar to the wall and the defect sublayers in 
a way that no numerical integration can. Further, this method succeeds best 
in the singular limits that provide difficulties for the numerical methods. 

Previous attempts at the application of such expansion techniques to turbulent 
shear layers near walls have dealt mainly with the reconstruction of the general 
lowest order classical results, valid independently of closure (Gill 1968; Tennekes 
1968; Yajnik 1970; Mellor 1971). While, in the attainment of even this limited 
goal, certain unnecessary compromises have been accepted by previous workers, 
the interest here, as was previously noted, is in obtaining new results by solving 
the boundary-value problem of the turbulent boundary layer for a broad class 
of closures (see Saffman (1970) for an introductory discussion of the potentialities 
of the employment of these expansion techniques for obtaining solutions for 
explicit closures). 

Solutions are developed in $ 2  for turbulent channel (or pipe) flow and, in Q 3, 
for two-dimensional turbulent boundary-layer flow with an applied pressure 
gradient, upstream of any separation. For the case of channel flow an eddy 
viscosity independent of the local mean strain rate (cf., for example, Mellor 
1966) is treated in the main text while an eddy viscosity linearly proportional to 
the local mean strain rate (cf., for example, Mellor 1966) is considered in the 
appendix. For the case of boundary-layer flow, an eddy viscosity independent of 
the local mean strain rate is treated. 

2. Turbulent channel flow 
2.1. The equations of motion 

Consider the steady two-dimensional turbulent flow of a fluid of constant density 
and viscosity (i.e., p*, v* = constant) between two parallel, plane, smooth, 
stationary walls of infinite extent. Let 

represent the co-ordinates tangential and normal to the plane of symmetry of 
the channel, respectively, with h* the half-depth of the channel. The mean velocity 
components in the x* and y* directions and the mean axial pressure gradient 

X* = h*x, y* = h*y (2.1 * 1) 

are u* = u*(y*)  = U t U ( Y ) ,  v* = 0, (2.1.2 a )  
dp*ldx* = (p*uZ2/h*) dpldx = constant < 0, (2.1.2b) 

where u$ is the mean velocity in the plane of symmetry. The relevant Newton 
laminar stress, Reynolds turbulent stress and total stress are, respectively, 

(2 .1 .34  

(2.1.3 b )  

P * 4  du  
dY 

7* = r*(y*)  = 7:(~*)+7:(y*) = P*U:~T(Y)  = m{l+~}-, ( 2 . 1 . 3 ~ )  

where E is the non-dimensional kinematic eddy viscosity. In  the analysis that 
follows, it is assumed that the channel Reynolds number Re = u,*h*/v* --f co. 

42-2 
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In the domain - 00 < x < 00, 0 6 y < I,  the non-dimensional boundary-value 
problem describing this channel flow is taken to be 

dp 1 d 
dx - = Redy --({I+€}$) = constant < 0; (2.1.4) 

1 du 
u+O, a-+O as y - f l ,  u - f l ,  -{l+e}---+O as y - f O .  (2.1.5) 

Re dY 

Integration of (2.1.4) over the domain of y ,  subject to the conditions (2.1.5), 

- -u,, (2.1.6) 
yields 

where u, = { - (I/Re) (du/dy),,,}& is the (positive) non-dimensional friction 
velocity at  the wall (y = I). Further, from the above, it is seen that (2.1.4) has 
a first integral, which may be expressed as 

1 du 
--(I+€}-+u:y = 0. 
Re dY 

(2.1.7) 

2.2. The eddy-viscosity model 

In order to solve the foregoing boundary-value problem, the kinematic eddy 
viscosity E must be specified. The eddy viscosity adopted here (cf. a more corn- 
plete discussion of the model in § 3.2) is given by 

4 Y ;  Re) = 4% 6; 6) = “(7) N(C), 
where 8 = {Reu,(Re)}, q = {I -y}, [ = 57 = {Reu,(Re)}{l- y}. (22 .1)  

Note that, in terms of the (normal) co-ordinates 7 and 5, 
u, = u, (Re) = {( 1/Re) (du/dy),,,}4 = (du/dc)c=o. 

u,(Re) + 0 and &Re) = {Reu,(Re)} -+ co as Re -+ co. 

Thus, for [ + co with q fixed, 6 = 87 -+ 03; while for 6 -+ 03 with cfixed, y = </t+ 0. 
For the development presented, the functions M ( 7 )  and N ( [ ) ,  respectively, need 
have only the following asymptotic forms: 

It is assumed, subject to verification, that 

( K , K $ ,  ... = constants of 0(1)), 

M(7)  = K ~ M ~ ( ~ ) + K ~ ( I + I C ~ ~  2+- . . . )+0  as q + O  

M(7)  -+ K,[1 - O({i -T ,J }~) ]  -+ K ,  as 7 -+ 1 (K ,  = constant of O( 1)); 

N ( ~ ) = N o ( [ ) - f C ~ 2 + . . . - + 0  as c + O  (C, ... = constantsofO(l)), 

N ( [ )  = No([)  -f [I - O(exp { - [})I -+ I 

( 2 . 2 . 2 ~ )  

} (2.2.2b) 

I 
as 6 + co. 

2.3. The basic formulation 

For the analysis, based on the given eddy-viscosity model, consider the following 
restatement of the boundary-value problem. The governing differential equation 
of (2.1.7), in terms of the variables of (2.2.1) and (2.2.2), becomes 

{ [ K T M O ( V )  NO(67)I + ( I / W u ( r ;  6)/d7 = u,(6) {I - $ 9  (2.3.1 a) 
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or, alternatively, 

{' +Kc&(c) N o ( c / g ) }  du(c, = - (c/n>' (2.3.1 b )  

The (relevant) boundary conditions of (2.1.5) reduce to 

u(7;5)=u(C;5)+0 as 7 ,c+o,  

u(q;lJ=u(c;E)-+l as q - - t l , c + c + c o .  (2.3.2) 

2.4. T h e  defect layer 

For the defect layer, the spatial and velocity variables, respectively, are taken 
to be 

7 = 1-Y ,  (2.4.1 a )  

f(%O = [1-u(Y;Re)l /u , (Re) ,  

so that u(r; c )  = -'T(g)f(7 ; 5); %(C) as 6 -+ O0. (2.4.1 b )  

The boundary-value problem in defect-layer variables, for 0 < 7 < 1, is given by 

f ( 7 ; 5 ) + 0  as 7+1.  (2.4.2) 

From (2.2.1) and (2.2.2), it is seen that the defect-layer viscosity function 
(M(7)  N(cq)  + (l/c)) -+ { M ( y )  + (l/[)} -+ M ( 7 )  as 6 -+ co with r ]  fixed. This limit for 
the viscosity function implies that the laminar stress is negligible compared 
with the turbulent stress in such a defect layer. 

Consider that the defect velocity functionf(7; c )  is taken to have an asymptotic 
expansion of the form 

f(7;5) 2 S,(E)f,(r) =fo(7)+ 2 fln(l)f?&(7)9 (2.4.3) 
n=O n=l 

with the gauge functions IS',([) ordered such that S,+,(g)/Sn(c) -+ 0 as 5 + co. 

yields 
To leading order of approximation, then, substitution of (2.4.3) into (2.4.2) 

(2.4.4 a)  

The solution of ( 2 . 4 . 4 ~ )  is determined to be 

With S, = l/& the equation and boundary condition for f,(y) are 

(2.4.5 a) 



662 

The solution of (2.4.5a) is 
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f l (7)  = - K - V 1 0 ( 7 )  -f11(7)1, 

Note that, with S, = ( 1/On, the equation and boundary condition for fn(r) are 

Thus, the asymptotic form for the defect-layer velocity is 

u(7; 5) = 1 - U T ( 4  {fo(r) + (1/5)fl(7) + . -4, (2.4.7) 

where f0(7) and fl(r]) are given by (2.4.4b) and (2.5.43), respectively. As 7 -+ 1, 
it is required that u(7; 5) -+ 1; while it is determined that, as 7 + 0, 

u(q;.$-)+ 1--u7(5) log - -wo+q+... ] -- K; [&log (i) +w,+ ...I + ...I, 
K ([ (3 

(2.4.8) 
where wo = fol(0), w1 = -fll(0), . . . are constants. 

To examine the behaviour of u, based on this defect-layer expansion, in 
a region between the defect and wall layers, the intermediate variable A, de- 
fined by 

= 7 / $ ( t )  = C/{t;$(t)h $(t) -+ 0, 5$(5) + as 5 + a, (2.4.9) 

is introduced. Then it follows that the defect-layer variable r] satisfies 

r ]  = $(t)h-+O as [+m, hfixed. (2.4.10) 

Application of the intermediate limit, h fixed, 5 --f co, to (2.4.8) yieIds 

uz l--uT [log - -w,+$h+...]-- --log - +wl+... 
K l 1 1hI K 5  l [  $A (;A) ]+4 

(2.4.11) 
2.5. The wall layer 

For the wall layer, the spatial and velocity variables, respectively, are taken to 
be 

5 = 67 = {Reu,(W){1 -Y}, (2.5.la) 

] (2.5.1b) 

The boundary-value problem in wall-layer variables, for 0 < < < 00, is given by 

(2.5.2) 

d C ;  5) = 4% W/u,(Re), 

so that 4 6 ;  5) = %(t) s(5; 5); u,(5) -+ 0 as t; -+ 00. 

+ K W O ( C )  Mo(C/5)}47(5; 5 ) K -  {I -K/t;)) = 0; 

g ( S ; t ) - . O  as 5+0.  

1 + KCNo(C) -Wo(C/5 )  -+ 1 + K C W 5 )  

1 
From (2.2.1) and (2 .2 .2) ,  it is seen that the wall-layer viscosity function 
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as E -+ co with g fixed. This limit for the viscosity function implies that the 
laminar stress and the turbulent stress are of the same order of magnitude in 
such a layer. 

Suppose that the wall velocity function g(C; E) has an asymptotic expansion 
of the form 

S(6; 5) z X Tm(E)  Sm(C) = SdC) + C T'(5) Sm(C), (2.5.3) 

where the gauge functions T,(O satisfy Tm+,([)/Tm(tJ + 0 as (-+ oc). Then, to 
leading approximation, the flow in the wall layer is prescribed by 

m-0 m = l  

With Tl = l/C, the equation and boundary condition for gl((;) are 

Sl(6) = -C/:Icl+~C"00(6)1; Sl(0) = 0. 

The solution of (2.5.5a) is 

where 

Thus, the asymptotic form for the wall-layer velocity is 

u(5; E )  Z % ( E )  {So(C) + (1/5) SdC) + **.I, 

(2.5.4 a )  

(2.5.4 b)  

(2.5.5 a )  

(2.5.5 b)  

(2.5.6) 

where go(C) and gl(C) are given by (2.5.43) and (2.5.5b), respectively. As C+ 0, 
it is required that u(6; 5) --f 0; while it is found that, as 5 -+ co, 

where jo = - {log( l / ~ )  - g,,(co)}, j, = - {log (I/.) +ql1(co)}, . . . are constants. 
Again, to examine the behaviour of u, based on this wall-layer expansion, in 

a region between the defect and wall layers, the intermediate variable A, 
defined by (2.4.9), is re-introduced. It is seen that the wall-layer variable 6 obeys 

5 = (&b(&))A -+ 00 as E -+ co, h fixed. (2.5.8) 

Application of the intermediate limit, h fixed, 5 -+ co, to (2.5.7) yields 

1 1 1  
u = ; u, (bog E - log (&) +j, +z (-@) + . . .] 

--!- [(K~)($h)-lOg~+lOg ( - -jl+... ] + . . .) . (2.5.9) 
K 5  
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uz 1--u, log - -w,++h+... ] -- K ~ [ { ~ ) - l o g { ~ ] + . l + . . . ] + . . . ~ ]  [ : L A 1  
1 

- [ 1 -:u, { [log6fco] +- [log[+c,] + .. . 
K c  

where c, = (j, - w,), c1 = (j, - w,), . . . are constants. 

2.6. Results 

From a comparison of (2.4.11) and (2.5.10), it  is seen that the postulated defect- 
and wall-layer solutions for the velocity u match when 

I 
1 ,u,([)log5 [ [ 1 +- 1:;J +$ [ 1 + &] + --I * (2.6.1) 

Since [(Re) = Reu,(Re), directly from (2.6.1), it is determined that the (pre- 
liminary) skin-friction law is 

[log {Re u,(Re)} + cl] + . . . . I 1 1 1 1  
u,(Re) --_ = K ([log{ReuT(Re)}+c,l+~ Reu,(Re) 

(2.6.2) 

The (asymptotic) solutions for g and u,, from the transcendental equation (2.6.1), 
are 

(KRe))-co+ ...I -+ 0 as Re,log Re --f co. 
u,(Re) E log ( K  Re) [1+ log ( K  Re) 

(2.6.3 b )  

Thus, (2.6.3) demonstrates that the two-layer asymptotic analysis of turbulent 
channel flow presented is valid in the limit Re, log Re + CO. 

The (conventional) skin-friction law for turbulent channel flow is presented 
in terms of the cross-sectional average of the mean velocity U" rather than 
the meanvelocity in the plane of symmetry, u$. This averagevelocityis defined by 

In order to exhibit the results of the present analysis for the above-mentioned 
skin-friction law, then, it isnecessary to derive an (asymptotic) expression for U .  
From its definition, it is seen that 
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with h fixed, #(5) --f 0 and g#(() -+ co as 6 j. 00 (cf. equation (2.4.9)). Evaluation 
of the integrals in (2.6.4), subject to this intermediate limit, yields 

1 
dt ,  ... = constant. 

K 

With the introduction of ;li, = u7/U = uT/U* and Re = Re U = U*h*/v*, from 
(2.6.1) and (2.6.5), the skin-friction law can be written as 

1 I 
[log{ZG,(Re)}+c,]+- 

ii,(Re) K K {RT;ll,(RZ)} 
[2 log {&E,(Re)}  + q + . . .] 2 

log {log ( K Z ) )  - +...I as log%-+co. (2.6.7)I 
{log ( K R e ) } 2  log ( K  &) 

The feature of the analysis presented that most warrants comment is the 
development of the higher order terms in the defect-layer expansion (2.4.7) and 
the wall-layer expansion (2.5.6). From this development, it is determined that, 
in the wall layer, the total stress is constant to lowest order (cf. equation (2.5.4)), 
and that the first modification (of O(l/5)) to this total stress changes linearly 
with the distance from the wall (cf. equation (2.5.5)). Further, it is determined 
that, in the defect layer, the total stress is given by the turbulent stress to lowest 
order (cf. equation (2.4.4)), and that the leading contribution of the laminar 
stress to the total stress is of 0(1/5) (cf. equation (2.4.5)). Thus, as 6 -f co, with 
the higher order terms of O( 116) -+ O(1og ( K  Re)/(K Re)}, a t  most, relative to the 
lowest order terms in both the defect-layer and wall-layer expansions, such 
terms represent small corrections. 

Other forms of the eddy viscosity, based on mixing-length theory (due to 
Prandtl), in which this eddy viscosity 8 is taken to be proportional to the local 
mean rate of strain (duldy), have been proposed (cf., for example, Schlichting 
1968; Mellor 1966). Further, it has been indicated that there exists a wide range 
of conditions for which such a model and the one employed in this section should 
yield comparable results. In  the appendix, an alternative formulation for an eddy- 
viscosity model based on mixing-length concepts is treated by asymptotic 
methods parallel to those of this section. For both models, the results, which are 
quite similar, indicate that such asymptotic methods (for Re -+ co) provide an 
effective means of analysing closures, in general. 

t The values of the constants G, <, . . . can be determined only with the specification 
of the functions M ( r ) ,  N(5)  (and/or Mo(r) ,  No(<)),  since wo and wo, w1 and wl. ... are defined 
by definite integrals dependent on the function Mo(q), and jo, jl, . . . are defined by definite 
integrals dependent on the function No(() .  

--f co) depends 
upon the eddy-viscosity model adopted only through the constant K.  It is only in the 
higher orders of approximation that depends upon the constants (G, 5, ...) derived 
from particular functional forms (to be specified) for M o ( ~ )  and No(<). 

$ To leading order(s) of approximation, this expression for .I (as log 
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3. Two-dimensional turbulent boundary layers 

Consider now the steady two-dimensional turbulent boundary layer of a fluid 
of constant density and viscosity (p*, v* = constant) at  a smooth surface. Let 

x* = L*x, y* = L*y (3.1.1) 

represent the co-ordinates tangential and normal to the surface, respectively, 
with L* a characteristic longitudinal body length. The mean velocity components 
in the x* and y* directions and the mean kinematic pressure are 

w*(x*, y*) = uEw(x, y), (3.1.2 a) 

P*(x*) = p: + (p*u*,") P(x) ,  (3.1.2 b )  

with u*, and p z  the (free-stream) velocity and pressure in the undisturbed 
region far from the surface; the specified tangential velocity at  the 'outer edge' 
of the boundary layer (y* + co) is taken to be 

U*(x*) = u*, U(x ) ,  (3.1.3) 

with UdUldx = -dP/dx. The relevant Newton laminar stress, Reynolds tur- 
bulent stress and total stress are 

3.1. The equations of motion 

u*(x*, y*) = U E U ( X ,  y ) ,  

au* au 
ay* u*, L*/v* ay ' 7F(x*, y*) = p*v* - = 

7*(x* ,  y*) = {TF(X*, y*) +7t*(x*, y*)} = (p*u*,") 7(x ,  y) 

( 3 . 1 . 4 ~ )  

(3.1.4 b)  

(3 .1.4~)  

In  the analysis that follows, it is assumed that the free-stream Reynolds number 
Re = u$ L/v* + co. 

In the domain x 2 xo, 0 < y < co, the non-dimensional boundary-value problem 
describing this boundary-layer flow is taken to be 

(3.1.5 a) 

(3.1.5b) 

u,w+ 0, e +  0 as y +  0 (z > x,,), (3.1.6 a) 

u+ U ,  (l /Re)(l+e)au/ay+O as y-+m ( x ~ z , ) ,  (3.1.6b) 

u+uo as x + x o  ( y  > 0). (3.1.6 c) 

Integration of (3.1.5) over the domain of y, subject to the conditionsof (3.1.6), 
yields the (so-called) von K k m h  integral, which may be expressed as 

Y = 3 = (g+(2+-(j) 8 (udz)) e m  t , 
(3.1.7 a) 

where 



Turbulent channel and boundary-layer flow 667 

In  (3.1.7), u,(x) (=  U; /~L :  = ([v*(au*/ay*),,o]g/u*m)) is the non-negative friction 
velocity at  the wall; 6(x) (= 6*/L*) and B(x) (= B*/L*) are the (conventional) 
positive displacement and momentum thicknesses. 

3.2. The eddy-viscosity model 

In  order to solve the boundary-value problem (3.1.5) with (3.1.6), the eddy 
viscosity e must be specified. The eddy viscosity adopted here is given by 

(3.2.1)t I 4x, y ;  Re)  = a, 7, C )  = EM(7) W) ,  
8 = Re*@) = {Re U ( x )  A(z)}A'(z), 

7 = y /A(x ) ,  (I = &j = Re U ( z )  A'@) y.  

In (3.2.1), A(%) (=  A*/L*) is the reference boundary-layer thickness (to be 
determined), while Re*@) ( = {U*A*/v*) dA*/dx*) is the reference boundary- 
layer Reynolds number, to be determined. Note that, for (+ 00 with 7 fixed, 
5 = g7 + 00; while, for 6 + 00 with (I fixed, 7 = C/E + 0. For the development 
presented, the functions M ( 7 )  and N ( g ) ,  respectively, need have only the following 
asymptotic forms: 

(3.2.2 a)  1 
M ( 7 )  = K ~ M ~ ( Y )  -+ q ( l  ...) -+ 0 as 7 + 0 

( K ,  K ~ ,  ..., = constants of 0(1)), 

(Km = constant of O(1)); 
M(7) + Kco[1- O(exp - 7})I -+ K m  as 7 -+ 00 

(C,m, ... = constants of 0(1)), (3.2.23) 

N(Cj = N o ( ~ ) + C C m +  ... + 0 as C + O  

N(C) =hT,(~)-+[1-O(exp{-~})]+i as g- tco.  

The model, as defined by (3.2.1) and (3.2.2), is a continuous two-layer model 
for the eddy viscosity (cf. $2) .  The quantity CM(7), as given, represents a 
generalized outer-layer (or defect-layer) factor for the eddy-viscosity function. 
The basic form of this defect-layer factor is a modification of that suggested by 
Clauser (1956). Similarly, the quantity N((I) represents a generalized comple- 
mentary inner-layer (or wall-layer) factor, whose given form incorporates the 
essential features of the Van Driest (1956) dissipation factor. 

i 

It is appropriate to consider the effective viscosity function 

1+d6,7,C) = 1+6Wr)"(I) 
in more detail. For an outer or defect layer, defined by 6 -+ co with 7 fixed, such 
that 6 = cq -+ co, this viscosity function is given by 

1 + m f ( 7 )  "&I) z 1 + 6W7)[1- O(exp { - C7NI 
2 6{:(Kco[1-O(exp{-r))l+(I/()} as r+co ( 3 . 2 . W  

r [{q[ 1 + ~~q~ + . . . ] + ( 1/6)] as 7 + 0. (3.2.3 b )  

t Superscript asterisks are reserved throughout this paper to denote dimensional 
quantities ; quantities without the superscript asterisk are dimensionless. The four excep- 
tions are the use of' the superscript asterisk to distinguish the reference boundary-layer 
Reynolds-number function introduced in (3.2.1) and three 'conventional ' Reynolds- 
number functions introduced below in (3.6.33), (3.6.39b), and (3.6.40a). 
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For an inner or wall layer, defined by ( -+ co with C fixed, with 7 = C / c  -+ 0, 
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1 + “(</6) W C )  2 1 + KCfl(C” + K 2 ( C / 0 2  + . *.I 
z l + ( ~ C ) C ~ + l [ l +  ...I as <+ 0 (3.2.4 a) 

K < [ ~ + K ~ ( < / ( ) ~ +  ...]+I as C+m. (3 .2 .43)  

That the model is continuous follows from the asymptotic behaviour of (i) the 
outer form as 7 -+ 0 and (ii) the inner form as g -+ 03. Note that, from the above, 
(i) E -+ Em( at  the ‘outer edge’ of the boundary layer (cf. Clauser 1956) and (ii) 
E --f (KC) Cm+l -+ 0 a t  the wall (cf. the arguments of Phillips (1969) for m+ 1 = 3 ) .  

It should be pointed out that, since rf/rF = rl/rl = E ,  because of the (specified) 
behaviour of this continuous two-layer effective viscosity, (i) in the outer layer, 
the order of magnitude of the turbulent stress is greater than that of the laminar 
stress by a factor of [ ( E  r [H(y));  while (ii) in the inner layer, the orders of 
magnitude of the turbulent and laminar stresses are the same ( E  @V(C)). 

3.3. The basic formulation 

Por the analysis, based on the given eddy-viscosity model, consider the following 
reformulation of the boundary-value problem. The spatial variables are taken 
to be 

( = Re* (x), 7 = y/A(x); ( -+ 00, 0 < 7 < 03, (3.3.1 a)? 

so that 
a a 

x-=- 
ax A 

The ‘normalized’ stream function is taken to be 

(3.3.1 b )  

(3.3.2 a) 

The governing differential equations of (3 .1 .5)  in terms of the variabIes of 
(3 .3 .1)  and (3.3.2),  with the introduction of E(6, 7) = M ( 7 )  N(&I), become 

t The boundary-layer Reynolds number, the largeness of which is the basis of the 
succeeding asymptotic expansions, is also a convenient choice for the ‘streamwise co- 
ordinate’. The expansions to  be employed thus have the aspects of ‘co-ordinate expan- 
sions’ with the region of validity far downstream from the initial station. 
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or, alternatively, 

(3.3.3 b )  
The boundary conditions of (3.1.12) become 

Y,aY/aq-+o as 7 + 0 ,  aY/aT-+ I as 7+00. (3.3.4) 

The von K&rm&n integral, with the introduction of S(fl(x))  = A'@), reduces to 

r = [l-  IT + B ] 5 - + [ ( 1 - 3 n  dO + B ) - ( H -  1) IT]@ , (3 .3 .5a)  

( d6 

with 

(3.3.53) 

~ ( [ ( x ) )  = R/O = qe. 
Note that, from the defining equation for A, it  follows that there is an additional 
constraint on the behaviour of Y, namely, that 

Y-+q-SA as 7-+00. (3.3.6) 

3.4. The defect layer 

For the defect layer, the spatial variables are taken to be 

5 = Re* (x), 7 = y / A ( x ) ;  6 -+ 00, 0 < 7 < co. (3.4.1) 

As previously noted, this defect layer is defined by fl  -+ co with 7 fixed, so that 
< = t7 -+ co. The stream function is taken to be 

Y(6, 7) = $(x, Y) / [U(X)  4x11 = 7 - &9w-, 7), (3.4.2) 

where X(6) is the reference defect function (to be determined). For the analysis, 
S(6) -+ 0 as 6 -+ 00. The velocity components, derivable from this stream function, 
are 

w 5 7 )  = u(x ,  Y ) / W Z )  = 1 - 8 ap/a7, (3.4.3 a)  

with T(6)  = - 6St(6)/S(fl). It is noted, from (3 .4 .3a) ,  that 

( I /U = [ I -  (U/U)l  = (U-@/U, ,  

the modified defect velocity law. 
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The boundary-value problem in the defect-layer variables, from (3.3.3) and 
(3.3.4), is given by 

ap a2F 
a? a72 

F + R ,  - - + O  as q-+co, F+O as q + O .  (3.4.5) 

From (3.4.4) and ( 3 . 4 4 ,  it  is determined that the first integral of the defect- 
layer equation is 

(3.4.6) 

3.5. The wall layer 

For the wall layer, the spatial variables are taken to be 

t = Re (x), 6 = 67 = Re (x) {y/A(x)}; 6 -+ co, 0 < 6 < 00. (3.5.1) 

The wall layer is defined by E + co, with [fixed, so that 7 = [ / E  + 0. The stream 
function is taken to be 

WE, C) = 1cr(z, Y)/[U(X) A ( 4 l  = (S(t)/E) G(t-9 0 9  (3.5.2) 

with S(&),  now, the reference wall function (to be determined). The velocity 
components are 

Z ( t ,  6) = 4 - G  Y)/ U ( 4  = s aGp6, (3.5.3 a)  

with, again, T(<) = -<h”(€J/S(<). Note that, from (3.5.3a), i t  follows that 

( I m  aGP6 = (W ( U P )  = U/% 

the modified wall velocity law. 
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The boundary-value problem, in the wall-layer variables, is given by 

s2 1 aG 
&Sl+T 

= -- { - [IT + TI 

G,aG/ac-+O, a2G/a(;2-+I'2 as c - + O ,  G+m as c+m. (3.5.5) 

From (3.5.4) and ( 3 . 5 4 ,  it is determined that the fist integral of the wall-layer 
equation is 

3.6. s(l) = K/lOgg 

Suppose that the defect-layer function and/or the wall-layer function S(f)  is 
given by 

8([) = K/log&, so that 8(E) -+ 0, c{8(&))k -+ 00 as & + a. (3.6.1) 

Note that consideration of this case is suggested by the results obtained in the 
analysis of turbulent channel flow in $ 2  (cf., for example, (2.4.7), (2.5.6) and 
(2.6.1)). 

3.6.1. T h e  defect layer. Por this 'distinguished limit', i.e., 

T(5) = -fiY(E)/#(() = l/log[+ 0 as [-+ 00, 

the defect-layer boundary-value problem for f ( 5 , ~ )  = KF(& 7) reduces to 

f + f i y m = K R ,  a f , a z f - + O  as 7+m. (3.6.2 b )  
a7 ar2 

With 7 fixed, l-+ a, for this case, it is assumed, subject to verification, that 
the defect-layer stream function f(E, 7) and the pressure-gradient function n(&) 
have the following asymptotic expansions: 

f(E,r) = (fo(l,r)+T(l)f,(l,r)+T2(l)f,(E,r)+ ... }+ ... ; (3 .6 .34  

II(t-1 = {IT,(l) + T ( t )  n,(E) + T2( l )  n,(l) + . . .) + * * * * (3.6.3 b)  
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For such a formulation, it is determined that the equations and boundary con- 
ditions for f0 (&  7) and f1(& 7) are 

dfo m [I - no] 6- + [I  - 3n,] fo,m 
d5 

(3.6.4 b )  

= - ( ~ ~ - n o 1 5 - + , 1 - 3 n , ] f l , m )  dfl at m 

+ ( l n , + ~ ~ - ~ , ~ 1 5 ~ + [ 3 r I l + ~ ~ - n o ~ ] f o , m ]  at  

f l - f f l , r n ,  afllar -f 0 as 7 +*. (3.6.5b) 

Attention is now directed to the defect-layer tangential-velocity function 
U = 1 -S al?/a7 = 1 - T af/ay. It follows that, within the framework of this 
asymptotic analysis, this velocity function is represented by the expansion 

(3.6.6) 

Near the wall, as 7 --f 0, it  is determined, from (3.6.4) and (3.6.5), that afo/a7 
and afl/a7 have the following asymptotic expansions: 

af, N Qo [(log (f) - I,] -7  (&log (f) - %I} + ...I, (3.6.7 a)  a4 = 

where K Q O ( t )  = [I  - I I o ] < d ~ + [ l - 3 1 T , ] f , , m ,  

KI,(() = function of integration (to be determined), 

K W , ( ~ )  = [1- 3II,] - [l- II,] 

+ 2rr0-[1-rIn] [I, -- I 21) (Io - 1 ), . . . ; ( 

+ Qi (7 log (3) [ (x, log (5) - &) + . . .] , (3.6.8a) 

(3.6.7 b) 

and z Ql[ (log (f) - 4) - 7 (V, log (i) - + . . .] 
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K Z . ( ~ )  = function of integration (to be determined), . . . . (3.6.8 b )  

Thus, as 7 --f 0, 

u l-T[&o({~og(l/r)-~oZb)-r{V,log(l/r)-W,}+ ***)I  
-~2[&l({lof;l~/r)--1;>+ ~ . . ~ + & ~ { ~ ~ ~ ~ ~ ~ / r ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ / ~ ~ - ~ o > +  -.*)I- * . .  * 

(3.6.9) 

For the examination of the behaviour of U based on the defect-layer expansion, 
in the overlap domain, between the defect and wall layers, the intermediate 
normal variable A, defined by 

A = r / M  = </t+(t); 415) + 0, 5#(8  -+ as 5 -+ a, (3-6-10) 

is introduced. Then, it follows that the defect-layer normal variable 7 obeys 

7 = $(g) h -+ 0 for h fixed, 5 -+ 00. (3.6.11) 

Application of the intermediate limit h fixed, 6 -+ 00 to (3.6.9) yields 

1 - T[{&o(log {l/$h> - 1 0 ) )  + T{&i (log {1/$h>-Ii)} + - . .I  
+ %?,($A) "J log { W h }  - W,) - T{&o(log { l/$h> - 1 0 )  (XO 1% {1/$4 - Y,)> + - * -1 + * * - - 

(3.6.12) 

3.6.2. The wall layer. For T = l/logt + 0 as 5 --f co, the wall-layer boundary- 
value problem for g ( t ,  <) = KG(& <) reduces to 

9, ag/ag -+ 0 a2g/ag2 3 K r 2  as 6 --f 0. 

With < fixed, t -+ co, it is assumed, subject to verification, that the wall-layer 
stream function g(5, <) and the friction velocity and pressure-gradient functions 
F ( t )  and IT (c) have the following asymptotic expansions: 

s(5, t;) = b O ( t - 9  5) + T ( t )  Sl(t,<) + T2( t )  s2(5,<) + * .  .> 
+ [~/~~(5)1{s10(5,5) + T ( t )  Sll(t,<) + T 2 ( 8  g12(t,C) + ...I + * *  * ; ( 3 3 . 1 4 4  

+ [1/5T(t)1 {QIO(E) + T ( t )  Qll(5) + T 2 ( t )  Q2(5) + 4 + . * .  9 (3.6.14b) 
Y2(E) {Qo(5t + T ( 0  Q,(t) + T2(51 Q 2 ( 8  + -. .> 

IT([) r { H O ( t )  + T(5)  ITl(t) + T2( t )  =At) + *..I + . . * * 1 
To leading orders of approximation, with [ = K< (and Ro([) = No(c)) and 

{I + @f0} a2gi/ap = Q$; gi, agi/a[ -+ o as [ -+ 0. (3.6.15) 

gig, [) = Kg#, g ) ,  i = 0,  I, 2, ..., the flow in the wall layer is governed by 

F L M  56 43 
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The first and second integrals of the above equations are given by 
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a&@[ = Qi{log (1 + [) + Jl> = Qi dQ0/d& (3.6.16 a) 

(3.6.16b) ga = Q,((l+[)~og(1.+5")+~(J,-1.)-J,) = QiQ,, 

From a consideration of the next higher orders of approximation, it is de- 
termined that the functions gli(E, 5) = Kgli(E, c), i = 0,1,  satisfy 

so that 

(3.6.18b) 

Further, it  is determined that the gli(c, [) = Kgli(5, c), i = 2,3,  ..., satisfy 
2 

{l + [ N 0 ) , g ;  a29"1i = Qli+ (i) rIiC+Bi; Di = D&, 5"). (3.6.19) 

Note that the function B,, for example, is expressible as 

Attention is now directed to the wall-layer tangential-velocity function 
ii = S aG/at; = T ag/ac. Within the framework of this asymptotic analysis, this 
velocity function is represented by the expansion 

(3.6.2 1 ) 

Near the wall, as 6 = (I/.) [ --f 0, the asymptotic behaviour of ii is given by 

Far from the wall, as C = (I/.) [ -+ CQ, the asymptotic behaviour of ZC is given by 
Qo+TQl+...)+-(Qlo+TQll+...)+...] 1 

5T 
1 1 1  + { %-i (log 5- J2) + . . .] 1-- (no+ Tnl+ T2n2  + .. .) + . . .) 

K ET 
1 1  

+{clog g(l0g c+ 2(J1 - 2)) + ...> (T2D2 + . . .) + . . .] + . . .] , (3.6.23) 

where J, = Jl(co) -log ( l / ~ ) ,  J, = J2(co) +log ( 1 / ~ ) ,  . . . are constants; 

D2 = G{ - 1 1 0  + [I- no1 tft/QJ) dQOkel1, * * * 
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based on the wall-layer expansion, 
in the overlap domain, between the defect and wall layers, the intermediate 
normal variable A ,  defined by 

is re-introduced. Then, it follows that wall-layer normal variable 6 obeys 

Application of the intermediate limit h fixed, t -+ co to (3.6.23) yields 

For the examination of the behaviour of 

= 7/4(!5) = C/E4(!5); 4(0 -+ 0, !54(5) -+ 00 as t -+ 00% (3.6.24) 

5 = {<#([)I h -+ co for h fixed, 6 -+ co. (3.6.25) 

B z Qo - T[{Qo(log (1/4h) - 4) - Q,} + T{Qi(log (I/@) - J1) - Q,} + - - .] 
+$h[{(l/K) (B2+n0)}+ ...I+ ... . (3.6.26) 

3.6.3. Results. From a comparison of (3.6.12) and (3.6.26), it is seen that the 
postulated defect-layer and wall-layer solutions for the velocity function ii match 

when Q, = 1, Ql = Io-J1, a, = (I0-J1) (I1-J1), ...; (3.6.27 a)  

(3.6.27 b) 

The results of (3.6.27a), in turn, produce the following leading terms in the 
expansions for the friction velocity function : 

Further, the results of (3.6.27 b), with respect to the displacement-thickness 

function, yield A z (A,+(l/log~)R,+ ...}+ ..., (3.6.29) 

where A, and A, are given by 

Qo = 52, = 1, Q1 = Ql = (I0-J1), ... . 

r2 Z {i + (i/iOg[) (I, - J ~ )  + (i/iog iy (1,- J,) ( I ~ - J . )  + ...I + . . . . (3.6.28) 

(3.6.30 a)  

As a direct consequence of the above, it is determined that in the present 
formulation the (preliminary) expression for the skin-friction coefficient cf is 

(2K2) (1/lOg [)2 [{I + (1/log 5) (I0 - J1) + ( l/log[)2 ( 1 0 -  Ji) (11- Ji) + -.-} -t +.*I. 
(3.6.3 1) 

(3.6.32~) S ( t )  = K T ( 0  = 4l/ logt) ,  
Since S($) is given by 

it follows that S(z) is given by 
S ( X )  = KT(x) = K(l/log [Re U ( x )  A(x) X(z)]) 

= K(l/log [K{Re U ( x )  A(x)}T(x)]). (3.6.32 b) 

With Re:(%) = {Re U ( z )  A@)),? then, 

(1/T) +log (1/T) = log ( ~ R e z ) ,  (3.6.33) 

t Compare the role of Re; = U*(z*)A*(%*)/v* in boundary-layer flow with that of 
% = U*h*/v* in channel flow. 

43-2 
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so that 

[ 1 + log ( K  Re;) 
(K  + . . . ] . (3.6.348) 

log (K  ReX) 
8 = KT = dA/dx z 

It is seen that (3.6.33) demonstrates that the two-layer asymptotic analysis of 
turbulent boundary-layer flow, as postulated in this subsection, is valid in the 
limit Re:, log Re: -+ a. In  turn, on the basis of the above, it is determined that 
the thickness gradient function A(z)  = { (z /A)  dA/dx}-l and the pressure- 
gradient function 

rqx) = -{(x/~)d~/dx}-i(x/~)au/ax = - ~ ( x )  ~ ( x )  

have the expansions 

A r {A,+TA,+ ...}, Il g {Ilo+TIII,+ ...} = -@{Ao+TAl+ . . . } ,  ( 3 . 6 . 3 5 ~ )  

where T ( x )  is given by (3.6.32)-(3.6.34) and 

A,  = 1 , A, = ( I/.) (I[ 1 + @] dx) ,  . . . . (3.6.353) 

Consider now the quantities y(x)  = X(6) r(6) and S(x)/A(x) = S(E).A(E). The 

y ( K T ) { Y , + T ~ , + . . . } ;  yo = Qo = 1, y1 = &a, = &(Io-J1), .... (3.6.36) 

expansion for y (x )  (cf. (3.6.27a) et seq.) is 

Similarly, the expansion for S(x)/A(x) (cf. (3.6.278) et seq.) is 

(&/A) r (KT) {(S/A), + T(S/A),  + . . .}; 
xd(S/A),/dx+ [I + 3@] (S/A), = 1, 

~ ~ m + [ 1 + 3 @ ] ( ~ )  S = ( (8 , -A,)-(x&+2Al)  d A  (i)j ax 1 

+ ( ~ ) ( x ~ ( ~ ~ [ ~ ] ' d l ) + [ 1 + 2 0 ] ( ~ , ~  r$]'dq)}, ..., (3.6.37a) 

sothat (i), = (&3]{/U3dx} = (6) g)y; Z = / U 3 d x ;  .... (3.6.373) 

Note that Erom the above it follows that 

-=a s /A  sly r ( ~ ) o ~ ~ + ~ ( [ ( ~ ) l / ( ~ ) ~ - ~ l ) + . . . } .  
(3.6.38) 

Y 
With (3.6.31)-(3.6.34) as a background, it isnow possible topresent expressions 

for the skin-friction coefficient c,in terms of the (more 'conventional ') Reynolds- 
number functions Re; = Re U A  = U*A*/u* and Re: = {Re Ux} = {U*x*/u*}. 

(i) In  terms of the former function, cf is given by 

210g{10g(KRe2)}+Q1 as logRe2 -+a. ( 3 . 6 . 3 9 ~ )  1 2K2 

" {log ( K  Re;)}2 [I + log ( K Re:) 

(ii) In terms of the latter function, cf is given by 

+...I as logRez + co. (3.6.393) 
2K2 4log{log (K2Re:)}+ Ql 

'f {log (K2 Rez))2 [l-l- log ( K 2  Re:) 
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In  order to compare the results of this analysis with existing analyses (e.g., 
Mellor & Gibson 1966), it is appropriate to introduce (i) the displacement- 
thicknessReynoldsnumber (function) 8* = Re; = U*6*/v* and (ii) the pressure- 
gradient function p” = 6*(dP*/dx*)/p*u:2. In terms of quantities introduced in 
this analysis, including 2 = 1 U3 dx, these functions are given by 

A* = <A = (6/A) Re: = {(6/A) (A/x)}Rez 

.+ 2 +  ..., ( 3 . 6 . 4 0 ~ )  (log (K2 Re, 11 
B= ~ A / r 2 = ( ” ) ~ ’ y ] ~ - ~ ( 2 ( d ; c )  dZ -2d2Z .... (3.6.403) 

Y P  
Further, the normal spatial variables of the previous analyses are related to those 
of this analysis by 

I u: y* 
( 3 . 6 . 4 1 ~ )  

& A * q = u : y * / v * =  ( y / s ) c r c +  .... (3 .6 .41b)t  

In turn, with < = B*/rr, 7 = Ej, g = fir, where 

r = A / r  = (&/A)/? = ( ~ / Y ) / A  -+ {(x/z) az/ax)-l 

(cf. equation (3.6.38)) and I’ = y / S  + 1 (cf. equation (3.6.36)),  the eddy viscosity 
of (3.2.1) may be re-expressed as 

8 = {W*/rr)ikf(rij)iv([/r) 
= {R*/r} [~q~~(rq)l  No({8*/r} i j )  = [K([/r) ~,([/r)l gO({8*/ry[), ( 3 . 6 . 4 2 ~ )  

so that, in the defect and wall layers, respectively, 

E -+ X*[~qn/lb(rij)l; + [KINo([)]. (3.6.42b) 

Note that since ll = (l?/Y)p+ (l/r)p” (cf. equation (3.6.40b)),  with some 
mathematical manipulation, it may be determined that Y is related to p” by 

~ ~ + Y + [ 1 + 3 p ] ,  sothat Y - t  I + -  Pax. (3.6.43) 

To complete the picture of the two-layer turbulent boundary layer, consider 
the uniformly valid (or composite) expansion for the tangential-velocity function 
U = u / U .  On the basis of the defect-layer and the wall-layer expansions (3 .6 .6)  
and (3.6.21) for this function, and the matching conditions (3.6.27) on these 
expansions, it is determined that the composite expansion (cf. for example, 
Van Dyke 1964; Cole 1968) for U, to leading orders of approximation, is given by 

X 3l C n  

1 - u z T((~-[$-(log,-I.>l) 

+ ~ ( ~ - [ ~ - ( I , - J , ) ( l o g r l - Z  ’ )I)+ ...I+... . (3.6.44) 

1- The variable b defhed in (3.6.41 b )  is, of course, not to  be confused with the [ intro- 
duced below (3.6.14). 
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Por the purposes of comparison, it should be noted that Coles (1969) has proposed 
a ‘ composite ’ formulation for Ti, based on a survey of existing experimental data. 
This formulation, written in terms of the variables of the present analysis, is 

;il = zyr(f+iiq, (3.6.45) given by 

where ii is a function of [, 6.3 is a function of (A/$) 7,s” being the ‘boundary-layer 
thickness function ’, and J” is a function of rg (see Coles (1969) for the properties 
of these functions). If attention is limited to the lowest order results in (3.6.44) 
and (3.6.45) (such that I’ + l), then (i) J” is identifiable with ago/ac, and, con- 
sequently, (ii) 36.3 must be identified with (though it is not as general as) 

- [afolar] - (1% (llr]) - 10) l -  

3.6.4. Concluding remarks. In  this section, then, for #([) = K(l/log[), an 
asymptotic analysis of the turbulent boundary-layer boundary-value problem 
(3.3.3)--(3.3.6) for a ‘sufficiently general’ eddy-viscosity model, (3.2.1) with 
(3.2.2), has developed the ‘wall velocity law’ and higher order corrections 
(cf. equation (3.6.21)), and the ‘defect velocity law’ and higher order corrections 
(cf. equation (3.6.6)). 

It is noted that the current analysis is a quite general one, in that, for the 
determination of the solutions for the outer (or defect-layer) expansions and the 
inner (or wall-layer) expansions of flow quantities, it is not required that these 
solutions be self-similar. Previous analyses (cf. Mellor & Gibson 1966) have 
treated the less general case of the (so-called) equilibrium turbulent boundary 
layer, in which, to a t  least the leading orders of approximation, the solutions for 
the flow quantities in the outer and inner layers are required to be self-similar. 

(i) With Qo = 1 (cf. equation (3.6.27rz)), it  is seen that, to lowest order, the wall 
layer is self-similar, since go([, {) = g&) = ( l / ~ )   go(^[) (cf. equation (3.6.16)). 

(ii) From (3.6.4) and (3.6.7), it is seen that, to lowest order, the defect layer is 
also self-similar iffo([, r ] )  = f E ( r ] ) ,  which, in turn, requires that no([) = II, = con- 
stant. This requirement on the pressure-gradient function for self-similar be- 
haviour in the defect layer corresponds to that proposed by Clauser (1956) from 
experimental observation. The constancy of no implies a power-law dependence 
of the outer edge speed U on the tangential co-ordinate x. The special properties 
of equilibrium (or self-similar) flow have been fully developed so often in the 
past that repetition here is unnecessary (see Mellor & Gibson (1966) for a dis- 
cussion of the literature). It should be noted, however, that, with 

= ((VYL’AIE + li”1- 3~ -+ [I + 3&1 

(cf. equation (3.6.43)), the frequently adopted identification of the boundary- 
layer thickness A, with (6/y),isnot exact, even to leading order of approximation, 
except for the special case of the zero-pressure-gradient boundary layer, where 

It should be noted that once the conditions for matching are given (cf. equation 
(3.6.27)), for the wall layer, to the orders of approximation considered, the 
(detailed) velocity profiles can be obtained, subject to the introduction of a 
specific function No(g) to perform the indicated quadratures (cf. equations 

BE 0. 



Turbulent channel and boundary-layer $ow 679 

(3.6.16)-(3.6.20)). The analogous statement for the defect layer, however, is that, 
with these matching conditions given for the defect layer, the (detailed) velocity 
profiles (to successive orders of approximation) can be obtained, subject (now) 
to the introduction of a specific function Ho(q), from a sequence of solutions to 
(properly posed) two-point boundary-value problems (cf. equations (3.6.4)- 
(3.6.8)). These defect-layer boundary-value problems may be treated by 
numerical or weighted residual techniques, with the computations cutting off 
at the inner edge of this layer (rather than continuing through the wall layer to 
the wall itself ). 
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Appendix. Turbulent channel flow : alternative eddy-viscosity model 

taken to be (cf. (2.1.5) and (2.1.7)) 
The non-dimensional boundary-value problem for turbulent channel flow? is 

1 du 
&{l+€)-+u;y = 0; 

dY 
1 au 

Re dY 
u+O, s - + O  as y + 1 ,  u - f l ,  -{ l+e}-+O as y+O. (Alb) 

The eddy-viscosity model adopted here (for the closure of (A 1)) is one based 
on mixing-length theory, namely, 

with 6 = Re .,(Re); 7 = 1 - y ,  C = 67 = Re u,(Re) {1 - y}. It is assumed (again) 
that u,(Re) -+ 0 and $(Re) = Reu,(Re) + co as Re -+ co (such that u,($) -+ 0 as 
$ -+ 03). The functions &(?) and 8(5) have the following asymptotic forms:$ 

(A 3a) 1 
&(q) = {&,d0(7)}2-+ (G7)2(1+G272+.. .)+0 as 7 - + 0  

(al, C2, . . . = constants of O( I)), 

&(q) -+ &,{I - 7)” [i - O((I - 57}m)l--f col as 7 -+ 1 
(El = constant of 0(1)); 

iV(c) = ao(5) --f 85+. . . + o as 5 + o (8,. .. = constants of ~ ( i ) ) .  

B(g) = iVo(c) + [I - O(exp { - Q)] -+ 1 as 5 + co. 

t The notation of the appendix is that of 8 2, except where noted. 
3 The authors plan to pursue certain aspects of the model further. The analysis presented 

here for this model is limited to the leading order matching of the defect-layer and wall- 
layer solutions. 



680 W.  B. Bush and F.  E .  Pendell 

For the defect layer, the spatial and velocity variables are 

7 = f(7; 6 )  = [l-u(y; R e ) l / u T ( R e ) ;  

the boundary-value problem, in the domain 0 < 7 < 1, is given by 

(A8b) 

Application of the intermediate limit (A fixed, 6 + co), as defined by (2.4.9) and 
(2.4.10), to the defect-layer velocity u(7; [) z 1 - uT([) [fo(7) + (l/6)fl(v) + . . .] 
yields 

where 8, = [2( 1 -log 2) +fOl(0)],  . . . are constants. 

(A:9) u z 1 - ( l / C )  u,{[log{l/~A} -do+ +$A + . . .] + . . .}, 

For the wall layer, the spatial and velocity variables are 

5 = Ev = Reu,(Re) {I -Y}, g(5;  = u(y ;  Re)/u,(Re); (A 10) 

and the boundary-value problem, in the domain 0 < < < co, is given by 

{I +4(K^s)2ivo(s)}3- 1 1 (A 14b) 
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Application of the intermediate limit (cf. (2.5.8) and (25.9))  to the wall-layer 
velocity u(C; 0 z u,(8 (So(5) + ( 1 / 8  Sl (0  + - * .> yields 

u g (I/:) u,{[log [ - log { I/#h} +j, + . . .I + . . .}, 
wherej, = - [log ( l / ~ )  - gol(co)], . . . are constants. 

solutions for the velocity match when 
Prom a comparison of (A 9) and (A 15), it is seen that the defect- and wall-layer 

(A 16) 1 r (I/a)u,(~)logCS([1+C,/logCSl+ -.>, 
with C, = (j,-$,), ... constants (cf. results of (2.6.1)). 
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